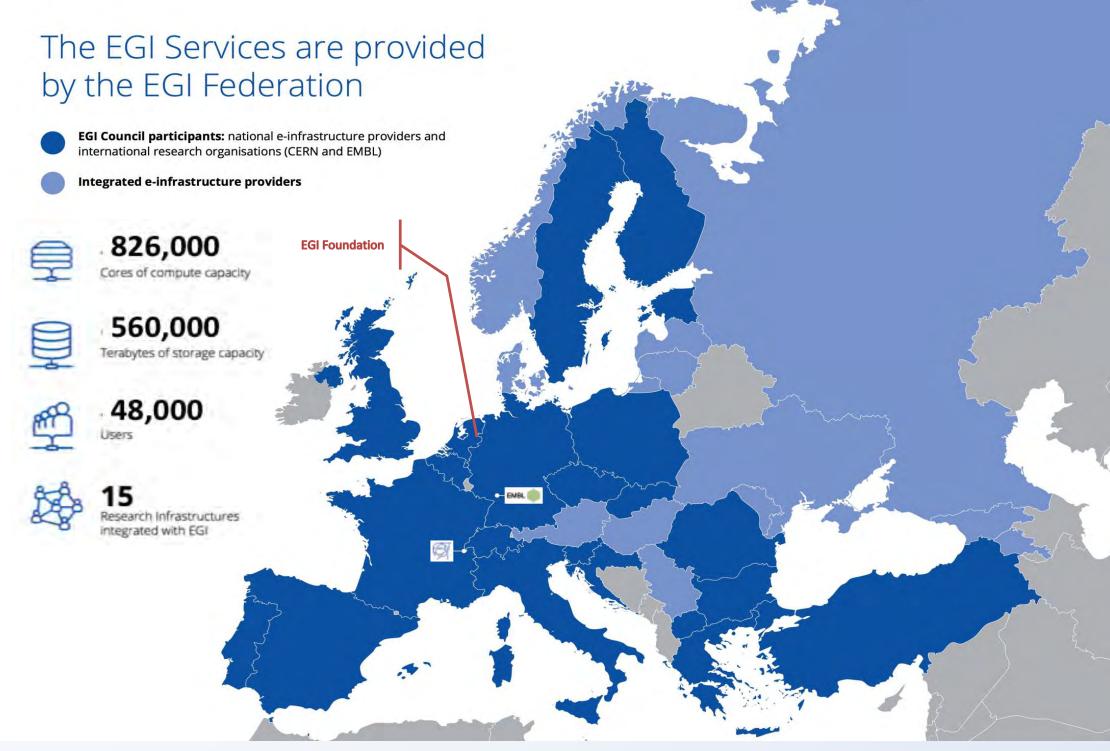
# EGI: advanced computing for research in Europe... and beyond!

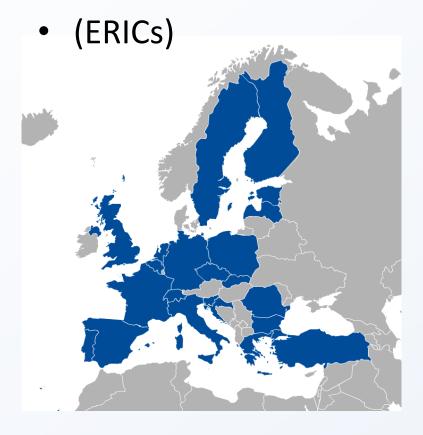
Yannick LEGRÉ
Managing Director
EGI Foundation

RO-LCG 2016 Conference — Bucharest (Romania) 26-28 November 2016


www.egi.eu






#### **EGI: Advanced Computing for Research**

EGI's mission is to create and deliver open solutions for science and research infrastructures by federating digital capabilities, resources and expertise between communities and across national boundaries.



#### EGI Membership

- Major national e-Infrastructures: 22 NGIs
- EIROs: CERN and EMBL-EBI
- EGI Foundation









#### International Partnerships







**USA** 



**Africa and Arabia** 

Council for Scientific and Industrial Research, South Africa



**Latin America** 

Universida de Fe<mark>deral do</mark> Rio de Janeiro







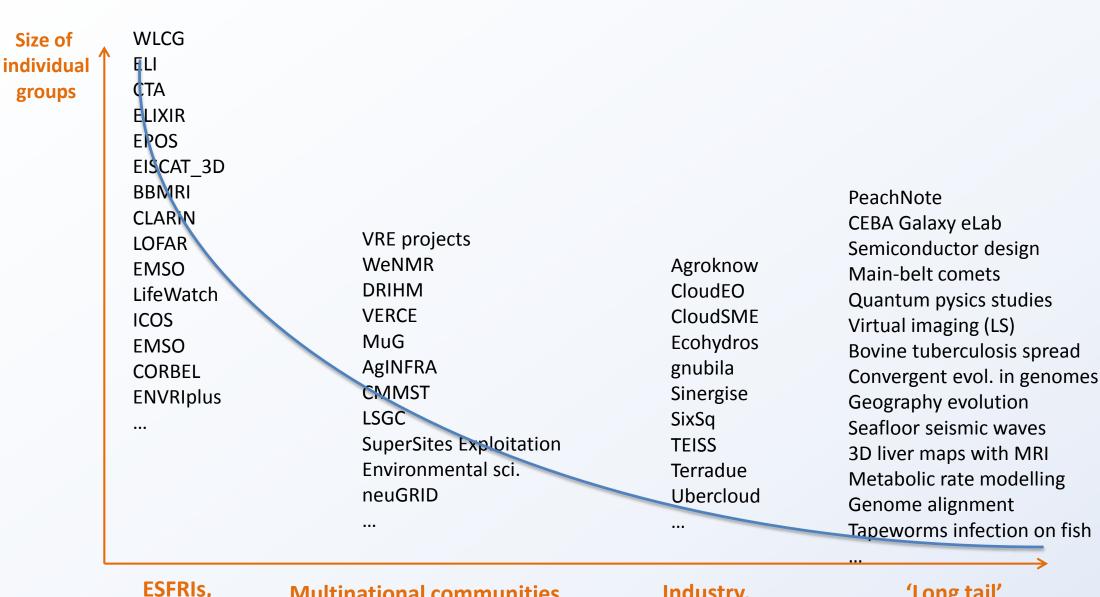


India Centre for Development of Advanced Comp.



Asia Pacific Region
Academia Sinica
at Taiwan




Ukraine
Ukrainian National
Grid

#### EGI Federation, 2016 QR3

The largest distributed compute e-Infra worldwide



#### Serving researchers and innovators



**FET flagships** 

**Multinational communities** 

Industry, **SMEs** 

'Long tail'

#### **EGI Service Catalogue**

#### Compute



#### **Cloud Compute**

Run virtual machines on demand with complete control over computing resources



#### **Cloud Container Compute**

Run Docker containers in a lightweight virtualised environment



#### **High-Throughput Compute**

Execute thousands of computational tasks to analyse large datasets

#### Storage and Data



#### **Online Storage**

Store, share and access your files and their metadata on a global scale



#### **Archive Storage**

Back-up your data for the long term and future use in a secure environment



#### **Data Transfer**

Transfer large sets of data from one place to another

#### **Training**



#### FitSM training

Learn how to manage IT services with a pragmatic and lightweight standard



#### **Training infrastructure**

Dedicated computing and storage for training and education



#### **Cloud Compute**

### Run virtual machines on-demand with complete control over the computing resources

#### With Cloud Compute you can:

- Execute compute- and data-intensive workloads
- Host long-running services (e.g. web servers or databases)
- Create disposable testing and development environments
- Select virtual machine configurations to fit your requirements
- Manage your Cloud Compute resources in a flexible way with integrated monitoring and accounting capabilities





#### **Powered by Cloud Compute**



#### **DRIHM Project**


 prototype an e-infrastructure to simulate extreme weather events

#### **EXTraS Project**

 implement four software pipelines to harvest data collected on-board ESA's space observatory XMM-Newton.



#### **Powered by Cloud Compute**



#### When a human cell meets Salmonella

K. Förstner, Univ. Würzburg, used CloudCompute to run a pipeline for the analysis of sequencing data.

*Nature* (doi:10.1038/nature16547)

Cloud Compute helped the team to handle demand peaks and that sped up the whole process significantly.

<u>Read more...</u>

#### **Powered by Cloud Compute**



#### Read more...



#### Chipster

- Chipster is a user-friendly analysis software for high-throughput data
- Users can save and share automatic analysis workflows, and visualize data interactively
- Relies on Cloud Compute



#### **Cloud Container Compute**

#### Run Docker containers in a lightweight virtualised environment

#### Main features of Cloud Container Compute:

- On-demand provisioning
- Lightweight environment for maximised performance
- Standard interface to deploy on multiple service providers
- Interoperable and transparent
- Removes friction between development and operations environments.







#### **High-Throughput Compute**

## Execute thousands of computational tasks to analyse large datasets

#### Main features of High-Throughput Compute:

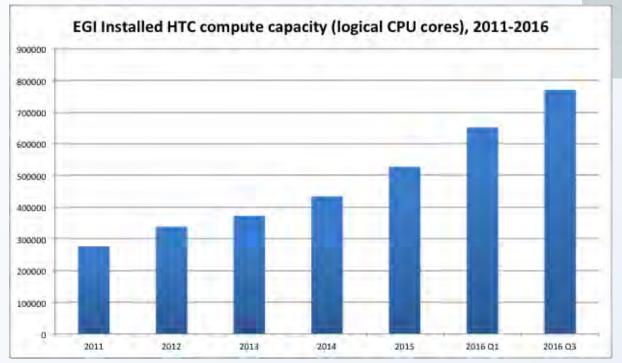
- Access to high-quality computing resources
- Integrated monitoring and accounting tools to provide information about the availability and resource consumption
- Workload and data management tools to manage all computational tasks
- Large amounts of processing capacity over long periods of time





#### Powered by High-Throughput Compute




Read more...

#### **HADDOCK**

- A web portal offering tools for structural biologists
- Used to model the structure of proteins and other molecules.
- So far, HADDOCK processed + 130,000
   submissions from over 7,500 scientists.

# Supporting international research communities and thematic services

Installed compute capacity trends 2011-2016



Distribution of Structural Biology user community

- > 2700 users
- > 81 countries

(credits: A. Bonvin, WeNMR)

Introduction to EGI

#### **High-Throughput Compute capacity**

# 826,500 cores







#### **Online Storage**

## Store, share and access your files and their metadata on a global scale

#### Main features of Online Storage:

- Assign global identifiers to files
- Access highly-scalable storage from anywhere
- Control the data you share
- Organise your data using a flexible hierarchical structure





## Powered by Online Storage and High-Throughput Compute



Read more...

#### **Virtual Imaging Platform**

- VIP is a web portal for medical image data analysis
- It is used by researchers worldwide
- VIP relies on High-Throughput Compute and Online Storage

#### **Online Storage**

# 285,000,000 GB

11,400,000 Blu-ray Disc







#### **Archive Storage**

## Back-up your data for the long term and future use in a secure environment

#### Main features of Archive Storage:

- Store large amount of data
- Free up your online storage
- Store data for long-term retention





#### **Archive Storage**

# 280 Petabytes 280,000,000 GB 11,200,000 Blu-ray Disc







#### **Data Transfer**

#### Transfer large sets of data from one place to another

#### Main features of Archive Storage:

- Ideal for very large files
- Able to handle large amounts of files
- Transfer process with automatic retry

"The most critical infrastructure and tools are the networks and the online storage and data transfer services (...). Without these the analysis of the data from the LHC would be almost impossible."

Ian Bird, WLCG project leader





99

# Online Storage and Data Transfer at unprecedented scales

- The Worldwide LHC Computing Grid (WLCG) is a global collaboration of more than 170 computing centres set up to provide the computing resources needed to store, distribute and analyse the data generated by the Large Hadron Collider (LHC) at CERN.
- During 2016, WLCG transferred on average 80
   Petabytes of data per month, with peaks at 96
   Petabytes during summer. This corresponds to more than 1 billion files per month transferred to thousands of particle physicists working across the world.

"WLCG must manage hundreds of petabytes of data, with more than 10PB of new data being added each month to the LHC runs. Without these, the analysis of the data from the LHC would be almost impossible."

lan Bird, WLCG project leader



## Learn how to manage IT services with a pragmatic and lightweight standard

#### With FitSM Training you can:

- Increase your expertise in managing IT services
- Raise your professional profile by a recognised certification

"I learned how to implement FitSM in an IT organisation and gained from the benefits the framework provides for efficient service management. **Pavel Weber, KIT** 







#### Training Infrastructure

#### **Dedicated computing and storage for training and education**

#### Main features of the Training Infrastructure

- Target-specific courses and added value for scientific communities
- Easy-to-use, on-demand access and improvements in the training offer
- Allows easy deployment of courses and reuse







## E-Infrastructure services enable the Open Science Vision













#### The European Cloud Initiative

- European Open Science Cloud (EOSC)
  - Integration and consolidation of e-infrastructures
  - Federation of existing research infrastructures and scientific clouds
  - Development of cloud-based services for Open Science
  - Connection of ESFRIs to the EOSC
- European Data Infrastructure (EDI)
  - Development and deployment of large-scale European HPC, data and network infrastructure
- Widening access
  - SMEs, Industry at large, Government



E-Infrastructures are the foundation of the European Open Science Cloud



https://ec.europa.eu/futurium/en/content/e-infrastructuresmaking-europe-best-place-research-and-innovation



#### In short ...

The European Open Science Cloud will encompass data, computing and networking services for the benefit of the whole scientific community and beyond

#### But...

- The European Union provide only 10 25% of the necessary funding. Member states provide the remaining 75 -90%
- The European Open Science Cloud can only be achieved by aggregating National Open Science Cloud
- National Open Science Clouds have to rely on 4 major pillars
  - A strong political push
  - Committed Scientific Communities
  - National pluridisciplinar (otherwise thematic) e-Infrastructures
  - Long-term and sustainable funding

It is amazing what you can accomplish if you do not care who gets the credit.

Harry S. Truman

#### **Get in touch!**





EGI Foundation • Science Park 140 • 1098 XG Amsterdam • The Netherlands +31 (0)20 89 32 007 • egi.eu